
1m. J. SlJlifJ.~ S'rllt·llIrt·.~ Vul. 22, No. 12, PI'. 1411 1422, 19H6
Prinlctl in ureat Uritain.

(X120 7I>KJ/K6 SJ.m 1 ,00
Pergamon Journals Ltd.

ELECTRIC AND ELASTIC MULTIPOLE DEFECTS IN
FINITE PIEZOELECTRIC MEDIA

S. A. ZHOUt and R. K. T. HSIEH
Department of Mechanics, Royal Institute of Technology, Stockholm

G. A. MAUGIN
Laboratoire de Mecanique Theorique, Universite de Paris VI, Paris

(Received 30 October 1985)

Abstract-In this paper, a piezoelectric analogy theorem is proposed, in which a piezoelectric body
is represented as being composed of two fictitious bodies, an elastic body and a rigid dielectric
body. An electric and elastic multipole approach for the treatment of various defects (dislocation,
inhomogeneity, ...) in finite piezoelectric media is then developed. It is shown that the electric and
elastic coupling effects, the boundary effects, and the defects may be considered uniformly as sources
of permanent and induced electric and elastic multipoles.

I. INTRODUCTION

As early as in 1880, it was discovered by Pierre and Jacques Curie that certain crystals
may, when stressed, produce an electric field, or when subjected to an electric field, deform.
Such phenomena, known as piezoelectric effects, have been widely used in technology.
Some recent trends are in biomechanics, for instance, the investigation of the regeneration
and the remodelling properties of bone tissue by considering its elastic and electric
behaviours. The piezoelectric behaviour of bone tissue is assumed to be the main causes
of its bioelectric activities. A comprehensive list of works in this area may be found in the
literature (Cady[I], Tiersten[2], Maugin[3], Nelson[4], Guzelsu and Demiray[5], etc.). In
this paper, the physical and mechanical behaviours of various defects in finite piezoelectric
media will be studied.

It is becoming known that the problems of different types of defects in various materials
may be treated in a uniform way by using the concept of multipoles also sometimes called
the Green's function representation (Kovacs[6], Hsieh et al.[?], Zhou and Hsieh[8,9]).
The multipole approach is based firstly on the obtainment of fundamental solutions to the
basic field equations of the different materials. Unfortunately, such a fundamental Green's
function solution does not yet seem to exist for piezoelectric materials not only because
the basic field equations in piezoelectricity are coupled but also because piezoelectric
materials are always anisotropic. To overcome these difficulties, a piezoelectric analogy
theorem is first proposed, in which a piezoelectric body is represented as composed from
two fictitious bodies, an elastic body and a rigid dielectric body, both with the same shape
as the piezoelectric body but with different boundary conditions and different sources and
loadings. By means of this theorem, an electric and elastic multipole approach for the
unified treatment of the physical behaviours of various defects in finite piezoelectric media
is developed.

2. BASIC FIELD EQUATIONS AND BOUNDARY CONDITIONS IN PIEZOELECfRICITY

It has been known that polarizable solid materials, when deformed, may exhibit
electrical phenomena, and vice versa, piezoelectric deformation is directly proportional to
the applied electric field. Such phenomena when they occur are always associated with
anisotropic solids which do not have a centre of symmetry. The basic field equations in a
classical linear theory of piezoelectricity[2,lO] may be given as follows.
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Constitutive equations
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(1)

(2)

where t jj is the stress tensor which is symmetric, Uk the vector of the elastic displacement,
Ek the vector of the electric field, and Pk the vector of the electric polarization. The elastic
moduli CijU measured at constant (zero) electric field, the dielectric susceptibility lkl

measured at constant (zero) strain, and the piezoelectric moduli em.ij have the following
symmetry properties, respectively

(3a)

Xkl = llk (3b)

in which one has used a dot to distinguish the symmetric part of the indices (ij) of the
piezoelectric moduli em,jj from the index (m). By introducing the electric displacement

(4)

where Co is the permittivity in vacuum, eqn (2) may also be written as

(5)

in which

(6)

is the dielectric permittivity of the material.

Quasi-static Maxwelfs equations

v x E = 0,

v·n = P..

or

in V

E = -V¢, in V

(7)

(8)

where ¢ is the electric potential and Pe is the volume density of free charges, which in
general does not exist since the piezoelectric bodies, which are dielectric, are electrically
neutral. However, we still keep this Pe term in eqn (7) for the moment.

Equilibrium equations

tij,j + /; = 0, in V (9)

where /; is the mechanical body force.
Introducing eqns (1), (5) and (8) into eqns (7) and (9), we arrive at four field equations

for the displacement vector Uk and the electric potential ¢

(10)

(11)

These differential equations should be completed by the boundary conditions. If on a part
of the body avu , displacements and on the complementary part avT , tractions are prescribed
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Uj = U?(x), onaV. (12)

on avT , aVT u av,. = avo (13)

Suppose that on aV"', the electric potential and on aVa, the surface charges are given as

(14)

(15)

The field equations, eqns (10) and (11), are coupled. The solution of the system of equations,
therefore, in general poses serious mathematical difficulties. If the material contains some
defects, the problem is even more difficult. In the following sections, an appropriate
(multipole) method will be proposed to solve some dislocation and inhomogeneity problems
in piezoelectricity. Such a method is based on an analogy theorem which we shall first
derive.

3. AN ANALOGY THEOREM IN QUASI·STATIC PIEZOELECTRICITY

It is known that the Green's function method has been successfully used by many
researchers in different areas to treat various problems, for instance, the multipole approach
has been developed to uniformly treat the problems of different types of defects in various
materials[6-9, 18]. In order to use the Green's function method for a specific material,
fundamental solutions to the basic field equations must be obtained. Unfortunately, such
a fundamental solution does not yet seem to exist for any practically used piezoelectric
materials not only because the basic field equations in piezoelectricity are coupled but also
because piezoelectric materials are always anisotropic.

Now the question is: is there any possibility of developing a multipole approach to
treat some defect problems in piezoelectric materials although the corresponding Green's
functions are not available? To answer this question, an analogy theorem in quasi-static
piezoelectricity will first be proposed in this section. The idea is analogous to the Duhamel
Neumann analogy in quasi-static thermoelasticity.

This analogy theorem (proved in Appendix A) may be stated as follows: consider three
bodies of exactly the same shape but with conditions prescribed as shown in Fig. 1. Then

t!!l = t!~) + e(1)..,l.llJ
I) IJ m.l}'+' ,m

D!1) = D!3) + e!1)u(1)
I I ••kl k,"

(16)

(17)

This theorem means an analogy between a piezoelectric body and two fictitious bodies,
an elastic body and a rigid dielectric body both with exactly the same shape as the
piezoelectric body but with different boundary conditions and different sources.

Now, by means of this theorem and using the elastostatic and electrostatic reciprocal
theorems, we can obtain the following system of integral equations instead ofthe differential
field equations, eqns (10) and (11)

in V

and

lj)(x) =1p"G" dx' + 16kl(lj)"G" - lj)G~,.),k· dx'

-f. eL ··u· ·..G" dx'.... IJ I,JIl ,

V

(18)
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Fig. I. An analogy between a piezoelectric body (1) and two fictitious bodies, an elastic body (2)
(£12) = e(2) = 0) and a rigid dielectric body (3) (CI3I = el3l '" 0).

Um(x) = IJ;Gjm dx' + I Cijk/(Uk"G jm - ujGkm.,.).J'dx'

+1e/,ij¢,IjG jm dx', (19)

in which the Green's functions Ge and Gim are defined in eqns (B2) and (B9), respectively
(see Appendix B), The Green's functions defined in the fictitious bodies are available for
certain piezoelectric materials. For instance, we have the exact analytical solution of the
Green's functions for crystals with hexagonal symmetry, such as CdS, a piezoelectric
semiconductor used in delay lines and signal processing (Kroner[ll] and Willis[12]). In
general, various schemes to evaluate these Green's functions are also available, such as
the perturbation method[13], Fredholm's technique[14] and the Fourier transform
technique[15]. By means of these two equations, a multipole approach will be developed
to solve some defect (dislocation, inhomogeneity, ...) problems in piezoelectric materials.

4. DISLOCATION IN PIEZOELECTRIC MEDIA AS A SOURCE OF ELECTRIC AND ELASTIC

MULTI POLES

Dislocations as sources of internal stresses often exist in crystals. The elastic fields
caused by dislocations in various states of motion in bodies of various materials and
geometries have been studied considerably (Hirth and Lothe[16]). The dislocation theory
has been developed by many scientists to explain not only the mechanical but also the
optical and electromagnetic properties of crystals (Nabarro[17]). This section is concerned
with the study of the electric and elastic fields caused by a mechanical dislocation in an
infinite piezoelectric medium.

According to the Volterra model, the dislocation (line defect) is defined as a part of
the boundary of a slip plane S, which is embedded in the material. The strength of the
dislocation is described by the Burgers vector b, which is defined as

(20)

Now using eqn (18) in the absence of free volume charges Pe = 0, one gets
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,J,(x) = Iek .-b·Gek,dS~ - f. ek' .u·Gek, .. dx''Y ,I) I.) .1) l • }

S V oo

and using eqn (19) in the absence of mechanical body forces, one has
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(21 )

(22)

in which one has used the continuity conditions of the electric potential and of the normal
component of the electric displacement Dn across the slip surface S. The physical meaning
ofeqn (22) is that the elastic displacement field caused by the dislocation in the piezoelectric
medium may be represented by a field which is produced by a surface distribution of
permanent elastic monopoles with surface density

onS (23)

and a volume distribution of the induced elastic dipoles with volume density

dPijn _ 2 ,J,
dx' - en.ij'/" in V exl (24)

which comes from the contribution of the electric field coupled with the elastic field. These
elastic multipoles are now distributed in a corresponding elastic medium instead of the
piezoelectric medium. Similarly eqn (21) means that the electric potential caused by the
dislocation may be represented by a scalar field created by a surface distribution of
permanent electric dipoles with surface density

onS (25)

and a volume distribution of the induced electric quadrupoles with the volume density

dPk·
--) = -2ek ..u·dx' .1) "

(26)

which are distributed in a corresponding rigid dielectric medium instead of the piezoelectric
medium. The induced elastic dipoles and the induced electric quadrupoles may be
determined by a closed integral equation obtained by substituting eqn (21) into eqn (22),
or inversely, the result of which may be solved by some appropriate methods (such as an
iteration approach or numerical methods). As a simple example, we shall solve the
dislocation problem formulated above by an iteration scheme. Suppose that the piezoelectric
moduli em.ij are proportional to a small parameter A" i.e.

em.ij = A,e~.ij

and that the solutions, u(x) and tjJ(x) of the problem may be expressed as

exl

u,{x) = L A,nUlnl(x)
n=O

exl

tjJ{x) = L A,n<t>(nl{x).
n=O

(27)

(28)

(29)
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Fig. 2. A finite piezoelectric body with an inhomogeneity.

By substituting eqns (27), (28) and (29) into eqns (21) and (22), respectively, it can be shown
that at the zeroth-order approximation, Volterra's classical result is recovered while at the
first-order approximation, the electromechanical fields outside the singularity region caused
by this mechanical dislocation may be approximately obtained as

5. INHOMOGENEOUS INCLUSION IN FINITE PIEZOELECTRIC MEDIA AS SOURCE OF

ELECTRIC AND ELASTIC MULTIPOLES

Consider a finite piezoelectric body with the elastic moduli Cijk/l the piezoelectric
moduli em.ij, and the dielectric permittivity ekl' in which there is an inhomogeneous inclusion
occupying a region V. with the elastic moduli Cou,the piezoelectric moduli e:.ij' and the
dielectric permittivity et, (see Fig. 2).

By introducing the following denotations:

(32)

(33)

(34)

(35)

(36)

(37)

in which the indicative function IX(X) is defined by
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(38)

then, the constitutive equations for the inhomogeneous piezoelectric medium may be
written as

(39)

(40)

The field equations, eqns (10) and (11), may be expressed as (in the absence of external
body forces and volume free charges)

(41)

(42)

where we have introduced the induced volume charge defined by

(43)

and the induced body force defined by

(44)

The physical meaning of such a manipulation may be explained as that the inhomogeneous
inclusion is replaced by a distribution of induced volume charges and a distribution of
induced body forces.

Now, identifying the induced volume charge pi;d and the induced body force ji;nd with
the Pe and /; in eqns (18) and (19), respectively, we get

+ r (- f1eklcP,I + f1ek.iPi,j)G~k' dx',JY1

and

in V (45)

+ r (f1CijkIUk,1 + Aek,ijcP,k)Gilfl,i'dx',JY1

in which the following interface conditions have been used:

in V (46)

(1) the electric potential cP and the normal component of the electric displacement Dn

are continuous across the interface S.;
(2) the elastic displacement u and the normal component of the stress tn are continuous

across the interface S•.

Using the Green-Gauss theorems in eqns (45) and (46), then these may be rewritten as
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-1 DknkGe dS' + r ek .uOGek·n dS' + r ek "u·Gek,n. dS'Ji .1) I .) J; .1) I • )

(iV¢ DVu cVT

- r ek.ijUiG~k'j' dx' + r (tiek.ijUj - tiBkjcP)np~k' dS'1 JS1

+ r (tieklcP - tiek.iju;)G~k'j' dx',
JVI

in V

-i C"kIU·Gk l·n.dS' - i ek ··<1>°G· ..nkdS'1) I m. ) .1) 1m,)

OVT OV~

- r ek ,,"'G· ·.nkdS' + rek ··"'G· "k,dx'J; .IJ'¥ 1m,) J\ .1)0/ 1m,)
oVa V

+ r (tiCijUUk + tiel.ijcP)nlGjm,j' dS'JS1

- f. (tiCjjklUk + tiel.ijcP)Gjm,j'/' dx',
VI

in V

(47)

(48)

The physical meaning of eqns (47) and (48) may be explained respectively as follows.
Equation (47) means that the electric potential produced by an inhomogeneous inclusion
in a finite piezoelectric body subjected to certain boundary conditions may be represented
by a distribution of electric multipoles in a fictitious rigid uniform dielectric medium with
the dielectric permittivity 1;k1 (sec Appendix B). This means that the inhomogeneous
inclusion is replaced by a distribution of induced surface electric dipoles

and induced volume electric quadrupoles

in VI.

(49)

(50)

The electric and elastic coupling effects are replaced by a distribution of permanent and
induced surface electric dipoles

dPi: _ °
dS' - ek.iPi nj, on avu (51)
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and a distribution of induced volume electric quadrupoles
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(52)

in V. (53)

The boundary effects are replaced by a distribution of permanent and induced surface
electric charges

onoV" (54)

and a distribution of permanent and induced surface electric dipoles

(55)

(56)

onoV". (57)

Similarly, eqn (48) means that the elastic displacement fields caused by the inhomogeneous
inclusion in a finite piezoelectric body subjected to certain boundary conditions may be
represented by a distribution of elastic multipoles in a fictitious homogeneous elastic
medium with the clastic moduli C jjkl (see Appendix B), that is the inhomogeneous inclusion
is replaced by a distribution of induced surface elastic monopoles

and a distribution of induced volume elastic dipoles

in Jt;.

(58)

(59)

The electric and elastic coupling effect is replaced by a distribution of permanent and
induced surface clastic monopoles

and a distribution of induced volume elastic dipoles

onoV"

(60)

(61)
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in V. (62)

The boundary effects are replaced by a distribution of permanent and induced surface
forces

dP j 0
dS' = T i ,

and a distribution of permanent and induced surface elastic monopoles

(63)

(64)

(65)

(66)

It has been shown that by means of an analogy theorem, the inhomogeneity problems in
a finite piezoelectric body may be considered as the problems of finding a distribution of
the induced electric and elastic multipoles defined respectively in a fictitious rigid uniform
dielectric body and a fictitious homogeneous elastic body, in which the induced electric
and elastic multipoles may be determined by a system of linear integral equations, eqns
(47) and (48), that in general, may be solved by some numerical methods.

The problems of dislocations and cracks in a finite piezoelectric body may be treated
in the same way[8,9].

6. CONCLUSIONS

In this paper, it is shown that the electric and elastic coupling effects, the boundary
effects, and the defects may be considered uniformly as sources of permanent and induced
electric and elastic multipoles. The physical quantities as interaction energy, etc.... can
then all be described in terms of electric and elastic multipoles. The specific multipoles are
given in terms of "input". The results are given in a form particularly convenient for
computational analysis.
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The verification of the piezoelectric analogy theorem proposed in Section 3 may be given as follows. Suppose
that we find an elastic displacement field U(2) in a fictitious elastic body and an electric potential field t/J(31 in a
fictitious rigid dielectric body satisfying all the conditions described in Fig. I (see body (2) and body (3)),
respectively, i.e.

and

uj2) = U?(2),

tlj!n j = T?l2l,
onoV.
onoVr

(AI)

(A2)

(A3)

t/J(31 = C1>0(J),

D13)n. = q(3),
onoV.
onoV~.

(A4)

We shall prove that the electromechanical fields uOl, t/J(I) given by eqns (16) and (17) satisfy the piezoelectric field
equations and the boundary conditions for the corresponding piezoelectric body described in Fig. I (see body
(I). By thc constitutive equations of piezoelectricity

tl]' = CUl,u1~1 + e~.\jt/J~'::

D111 = -4Pt/J~I) + e1~IA?

and using eqns (16) and (17) and eqns (AI) and (A3), we get

t!l.~ = -fj2) + e~.\f/>~'::j = -fPl, in V

D1~1 = p~31 + e111A~~ = p~I), in V.

Using eqns (A2) and (A4), we have

UPI = U?(21 = U?l]l,

tlJlnJ = T?(2) + e1IM~~lnj = T?ol,

and

t/JP) = C1>0121 = C1>00I,

D11)n. = 0'(3) + e1~IA?nj = qO),

onoV.

onoVr

It is shown that the electromechanical fields given by eqns (16) and (17) are the solutions of the piezoelectric
body subjected to the loadings and boundary conditions described in Fig. 1. Q.E.D.

APPENDIX B. STATIONARY ELECfRIC AND ELASTIC MULTIPOLES

Consider M point charges loeated in a small volume centred at x' of an infinite uniform dielectric medium
with dielectric permittivity Eij . The resulting electric potential may be obtained as

AI

t/>(x) = L q'G'(x, x' + d').-1
where x' + d' is the position vector of the /Xth point charge if, and G' is the Green's function satisfying

which may be regarded physically as the electric potential produced by a unit point charge located at x'.
Expanding the Green's function in a Taylor series about (x, x'), we get

(Bl)

(B2)
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(il3)

where we ha ve introduced the electric multipoles of order k

M

P~t .jk = L q~d'~l··· d.~•.
a ~ 1

For k = 0, we get the resultant charge of the point charge array

M

P" = I q'.
11=1

For k = I, we get the electric dipole

AI

Pf = I q'd:
11= J

(B4)

(il5)

(B6)

.. , etc.
Similarly, consider N point body forces acting in a small volume centred at x' of an infinite homogeneous

clastic medium with elastic moduli Ciju' The resulting displacement fields may be obtained as (Siems[IR])

N

um(x) = I fjGmi x,x' + d')
11=1

where the clastic multipoles of order n are defined as

N

PPI ..,~ = L fjd~l···d~~.
/I ~ I

(B7)

(BR)

If the resultant force of the point force array is zero, we have Pj = O. and callI'". 1',,, . ... elastic monopole.
clastic dipole, ... , respectively. The Green's function Gi.. satisfying the equations

(B9)

may be regarded physically as the displacement along the Xi-axis at x produced by a unit point body force
applied along the xm-axis at x'.


